A Derivation of Friis' Noise Factor Cascade Formula

Dallas Lankford, 11/3/2010, rev. 7/20/2011

The definition of noise factor F_{m} is
$\mathrm{F}_{\mathrm{m}}=\left(\mathrm{S}_{\mathrm{im}} / \mathrm{N}_{\mathrm{im}}\right) /\left(\mathrm{S}_{\mathrm{om}} / \mathrm{N}_{\mathrm{om}}\right)$,
where S denotes signal, N denotes noise power, i denotes input, o denotes output, m denotes the m -th amplifier, and where
$\mathrm{N}_{\mathrm{im}}=\mathrm{N}_{\mathrm{i}}$.
$\mathrm{N}_{\mathrm{i}}=\mathrm{kT}_{0} \mathrm{~B}$ when the input impedance of the amplifier is equal to the thermal input noise source $\mathrm{R}_{\mathbf{s}}$,
where $\mathrm{k}=1.38 \times 10^{-\mathbf{2 3}} \mathrm{J} /{ }^{\circ} \mathrm{K}$ is Boltzmann's constant, T_{0} is $290^{\circ} \mathrm{K}$, and B is the system noise power bandwidth in Hertz.

If the input impedance of the amplifier is $\mathrm{R}_{\mathbf{i}}$ and not equal to $\mathrm{R}_{\mathbf{s}}$, then
$\mathrm{N}_{\mathrm{i}}=4 \mathrm{kT}_{0} B \mathrm{R}_{\mathbf{s}} \mathrm{R}_{\mathbf{i}} /\left(\mathrm{R}_{\mathbf{s}}+\mathrm{R}_{\mathbf{i}}\right)^{\mathbf{2}}$.

Note that $\mathrm{N}_{\mathrm{i}}($ watts $)=3.98 \times 10^{-21} \mathrm{~B}$ watts, so that
$N_{i}(d B m)=10 \log \left(1000 \times 3.98 \times 10^{-21} \times B\right)=-174+10 \log (B) d B m$
when the input impedance of the amplifier is equal to the thermal input noise source R_{s}.
By algebraic rearrangement of the noise factor definition,
$\mathrm{F}_{\mathrm{m}}=\mathrm{N}_{\mathrm{om}} /\left[\left(\mathrm{S}_{\mathrm{om}} / \mathrm{S}_{\mathrm{im}}\right) \mathrm{N}_{\mathrm{i}}\right]$, so that
$F_{m}=N_{o m} /\left(G_{m} N_{i}\right)$, where G_{m} is the gain of the m-th amplifier, so that
$F_{m}=\left(G_{m} N_{i}+N_{m}\right) /\left(G_{m} N_{i}\right)$, where N_{m} is the additional (excess) noise power added by the m-th amplifier.
By algebraic rearrangement of the last equation above,
$\mathrm{N}_{\mathrm{m}}=\left(\mathrm{F}_{\mathrm{m}}-1\right)\left(\mathrm{G}_{\mathrm{m}} \mathrm{N}_{\mathrm{i}}\right)$.
In general, the total output noise power N_{m} (total) of the m -th amplifier is
$N_{m}($ total $)=\left(F_{m}-1\right)\left(G_{m} N_{i}\right)+G_{m} N_{i}=F_{m} G_{m} N_{i}$, or
$\mathrm{N}_{\mathrm{m}}($ total $)(\mathrm{dBm})=\mathrm{NF}+10 \log (\mathrm{G})+10 \log (\mathrm{~B})-174$, where NF is the noise figure of the amplifier.
Next,
$\left(\mathrm{F}_{1}-1\right)\left(\mathrm{G}_{1} \mathrm{~N}_{\mathrm{i}}\right)=\mathrm{N}_{1}$,
$\left(\mathrm{F}_{2}-1\right)\left(\mathrm{G}_{2} \mathrm{~N}_{\mathrm{i}}\right)=\mathrm{N}_{2}$, and
$\left(\mathrm{F}_{\mathrm{c}}-1\right)\left(\mathrm{G}_{\mathrm{c}} \mathrm{N}_{\mathrm{i}}\right)=\mathrm{N}_{\mathrm{c}}$,
where c denotes the cascade of amplifier 1 followed by amplifier 2 .
The gain G_{c} of the cascade is
$\mathrm{G}_{\mathrm{c}}=\mathrm{G}_{1} \mathrm{G}_{2}$,
and the cascaded noise N_{c} due to the two amplifiers alone is
$\mathrm{N}_{\mathrm{c}}=\mathrm{G}_{2} \mathrm{~N}_{1}+\mathrm{N}_{2}$.
It follows from the last formula, the next to the last formula, and the three formulas immediately above it that $\left(F_{c}-1\right)\left(G_{1} G_{2} N_{i}\right)=\left(F_{1}-1\right)\left(G_{1} G_{2} N_{i}\right)+\left(F_{2}-1\right)\left(G_{2} N_{i}\right)$.

From the above it follows by dividing both sides of the equation by $G_{1} G_{2} N_{i}$ that
$\mathrm{F}_{\mathrm{c}}-1=\mathrm{F}_{1}-1+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$, or
$\mathrm{F}_{\mathrm{c}}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}$.
If n amplifiers are cascaded together, then from the previous formula it can be shown that $\mathrm{F}_{\mathrm{c}}=\mathrm{F}_{1}+\left(\mathrm{F}_{2}-1\right) / \mathrm{G}_{1}+\left(\mathrm{F}_{3}-1\right) /\left(\mathrm{G}_{1} \mathrm{G}_{2}\right)+\ldots+\left(\mathrm{F}_{\mathrm{n}}-1\right) /\left(\mathrm{G}_{1} \mathrm{G}_{2} \ldots \mathrm{G}_{\mathrm{n}-1}\right)$.

